

Fibroblast Activation Protein (FAP)a promising target for radiopharmaceuticals

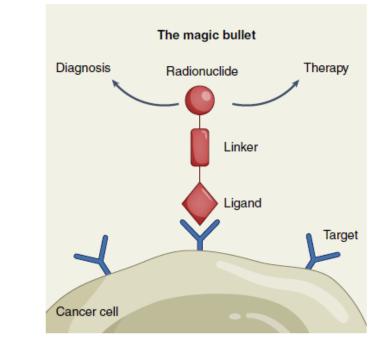
6/08/22 Sherly Mosessian PH.D Chief Scientific Officer SOFIE Sherly.Mosessian@sofie.com

Learning Objectives

1. Explain what is FAP and what role it plays in oncology

2.Identify key radiopharmaceuticals involved in FAP targeting

3. Describe the current state of clinical development for FAP Inhibitors (FAPI)


Theranostics

Diagnostic: PET imaging to Select patients whose cancer cells have the targeted protein. Short-lived radionuclide ⁶⁸Ga or ¹⁸F

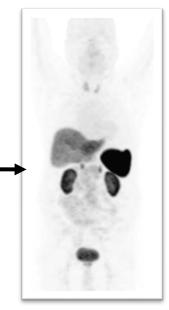
Treatment: Molecular targeted radio-ablation of cancer cells. Long-lived radionuclide ¹⁷⁷Lu , ²²⁵Ac or other beta or alpha particle emitters

WHY?

- See where the drug is going and how it is cleared from the target and the rest of the body
- Select patients based on having a specific target protein for therapy
- Monitor treatment response

The magic bullet. Theranostics target unique properties of cancer cells using different radionuclides for diagnosis and treatment. Credit: Marina Spence/Nature Medicine

Carrie Arnold Nature News 2022


Theranostics- Neuroendocrine Tumors- First example

Target: Somatostatin Receptor

PET Imaging Probe is 68Ga-DOTATATE Treatment Probe is 177Lu-DOTATATE The DOTATATE probe is a small peptide ⁶⁸Ga-DOTATATE PET imaging

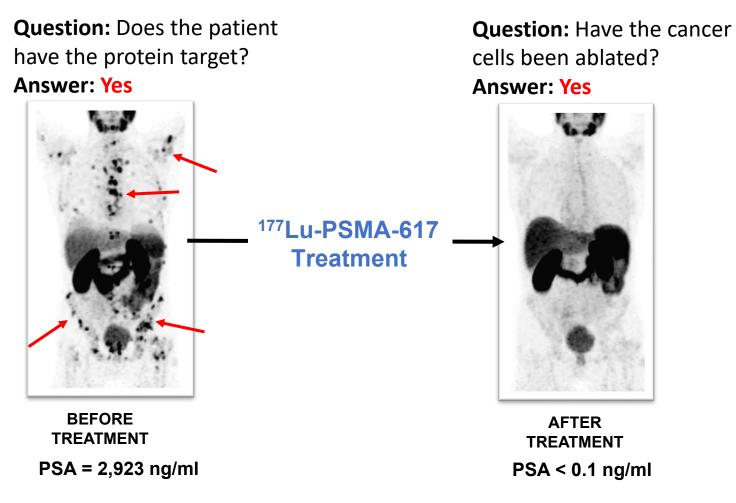
Question: Does the patient have the protein target? Answer: Yes

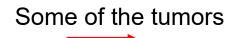
¹⁷⁷Lu-DOTATATE to ablate cancer cells Question: Have the cancer cells been ablated? Answer: Yes

BEFORE TREATMENT Neuroendocrine tumors

AFTER TREATMENT

F. Giesel (U of Heidelberg), K. Herrmann (U of Essen), W. Fendler (UCLA), J. Czernin (UCLA)

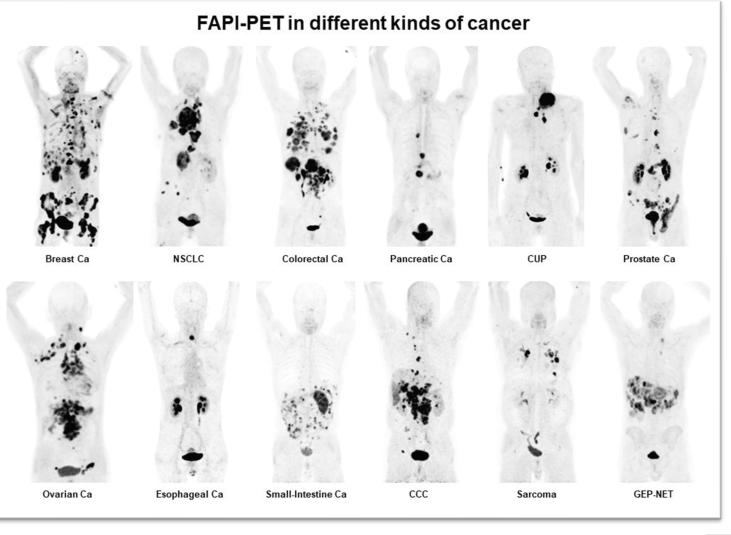

Theranostics- PSMA target in prostate cancer- Second example


(Castrate resistant late-stage prostate cancer patients who have failed all accepted treatments)

Target - Prostate-specific membrane antigen (PSMA)

PET Imaging: ⁶⁸Ga-PSMA-11 Treatment: ¹⁷⁷Lu-PSMA-617

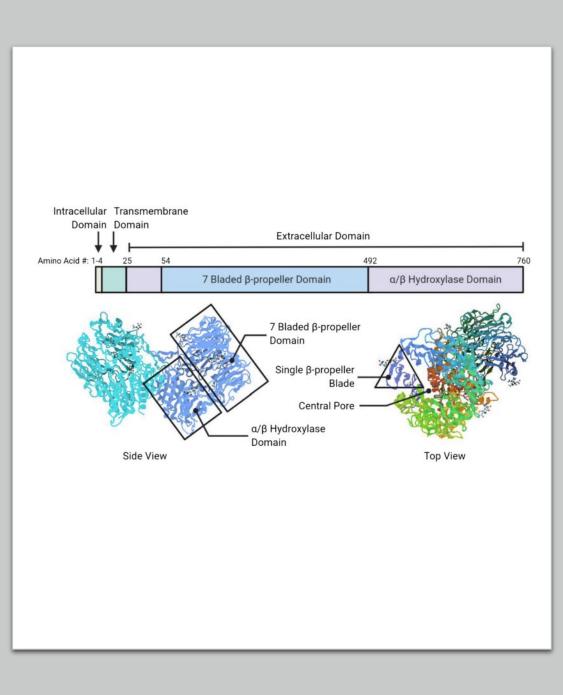
⁶⁸Ga-PSMA-11 PET scans



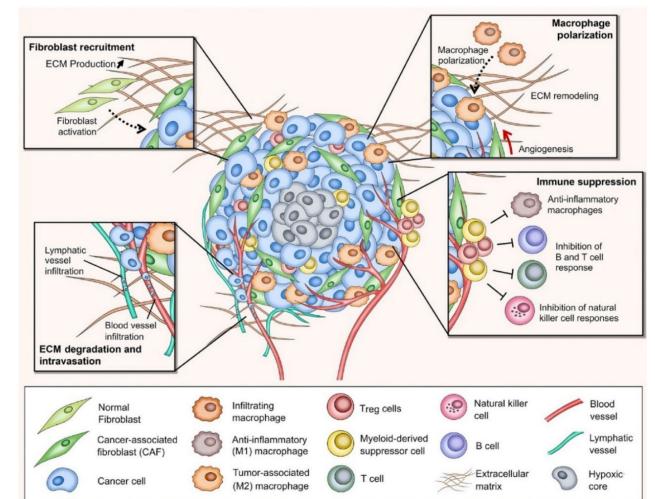
FAP target as the next theranostic breakthrough

SNMMI Image of the Year 2019

"A single radiotracer can identify nearly 30 types of cancer, allowing for new applications in noninvasive diagnosis, staging and treatment, according to research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI). This honor goes to a team of researchers at University Hospital Heidelberg, Germany, showcasing the efficacy of the FAPI radiotracer."

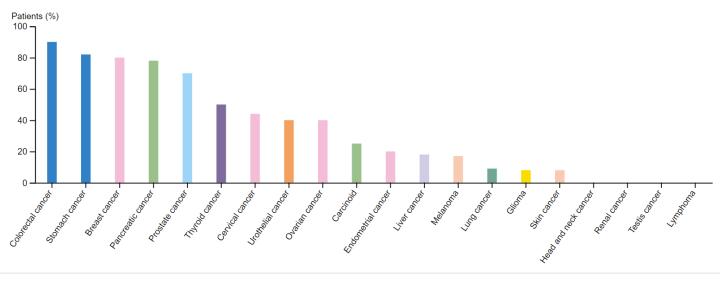


1. Explain what is FAP and what role it plays in oncology

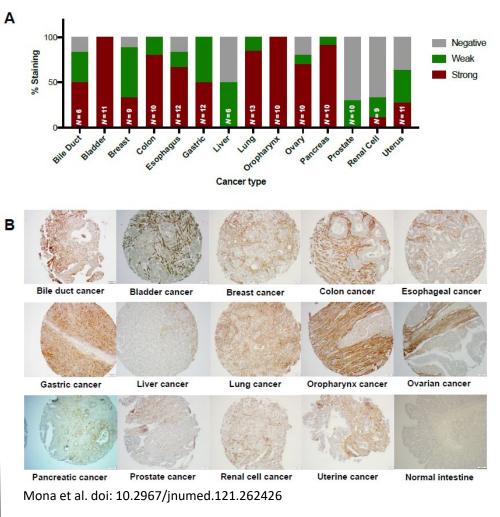

What is FAP?

- Fibroblast activation protein (FAPa or FAP)
- A Type II membrane-bound serine protease. Contains 2 enzymatic activities: dipeptidyl peptidase and endopeptidase
- Associated with fibrosis, tissue repair, inflammation, and extracellular matrix (ECM) degradation
- Through enzymatic and non-enzymatic activities, FAP demonstrates pro-tumorigenic activity involved in migration, invasion, and proliferation of cells in the tumor microenvironment, resulting in ECM degradation, tumor angiogenesis, invasiveness, and evasion of immune response

FAP and CAFs


- Among all the stromal cells, cancer-associated fibroblasts (CAFs) are dominant populations in the tumor microenvironment
- Fibroblasts become activated during wound repair and regeneration. Malignant tumors are recognized as "wounds that do not heal"
- FAP is highlighy expressed on the surface of CAFs
- When looking at markers of CAFs, FAP has received interest as a potential biomarker for CAF identification
- FAP is a great target due to its overexpression in most of the cancer types (90%)

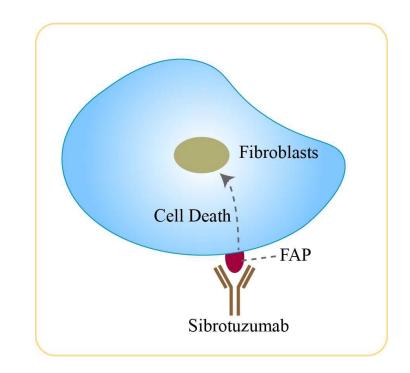
Imlimthan S et al. 2021. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel).


FAP expression levels in different cancers

Several breast, colorectal, prostate, stomach and pancreatic cancers along with a few squamous cell carcinomas, ovarian and urothelial cancers displayed moderate to strong cytoplasmic and membranous positivity for FAP. Remaining cancer tissues were weakly stained or negative. Human Protein Atlas: https://www.proteinatlas.org/ENSG00000078098-FAP/pathology

- FAP is highly expressed in an array of different solid tumors (ECM/stroma)
- Noteworthy: Colorectal, GI/stomach, Thyroid/Oropharynx, Pancreas, Ovarian, Lung and Bladder/Urothelial show high expression of FAP in data displayed here
- FAP expression is detected in the tumor cells of sarcomas

Note: inconsistency in FAP expression levels between these studies displayed could be due to sample size, sub-type of disease and stage of disease.


Select examples of FAP targeted therapies- non RLT

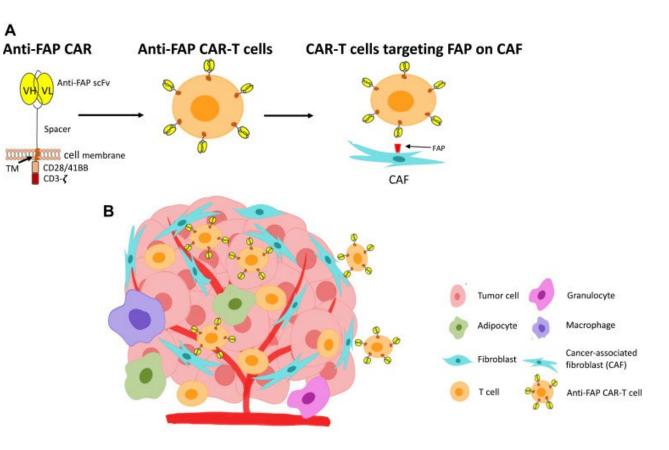
Note: this is not meant to be a comprehensive list of all FAP targeted non RLT

Antibody

- Example: Sibrotuzumab (also known as BIBH 1) is a humanized monoclonal antibody (mAb) with high affinity to bind to fibroblast activation protein (FAP)
- Developed by Boehringer Ingelheim Pharma KG for the treatment of cancer
- Studied as a drug therapeutic for colorectal, nonsmall cell lung, breast, as well as head and neck cancers
- Results did not show sufficient efficacy in 2003 Phase II study

Small molecule inhibitors

- Examples include Talabostat and Linagliptin
- Dipeptidyl peptidase-4 (DPP-4) inhibitors
- Talabostat blocks dipeptidyl peptidases, such as fibroblast activation protein (FAP), resulting in induction of cytokine and chemokine.
 Promoting immune response. Studies have been conducted in Phase 2, which demonstrated some clinical response, but safety concerns have halted further investigation
- Linagliptin is an approved drug, which has been shown, along with diet and exercise, to lower blood sugar levels in patients with type 2 diabetes

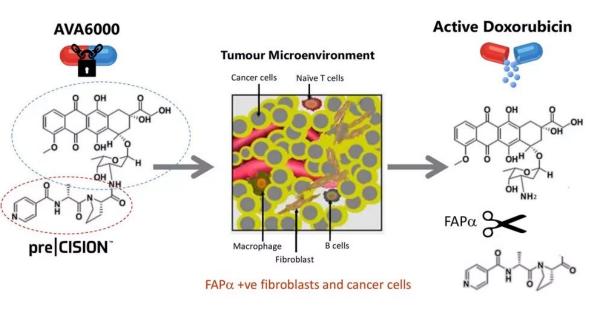


CAR T cell therapy

FAP-targeting CAR-T cells have been genetically engineered to target CAFs in various solid cancers, such as mesothelioma, lung and pancreatic cancers

Clinical trials are in early stages. Examples:

- The Sixth Affiliated Hospital of Wenzhou Medical University
- University of Zurich


10.2147/ITT.S291767

Prodrugs

Prodrugs are inactive medications that chemicals or enzymes provide targeting by their activation after the medication enters the body.

- Example: AVA6000 FAPα-Activated Doxorubicin by Avacta Life Sciences
- In its FAPα activated form, the doxorubicin drug moiety is not cell permeable
- In the tumor microenvironment, where the level of the enzyme FAP is substantially higher than elsewhere in the body, the FAP substrate is cleaved and the active doxorubicin drug is released causing a significant differential targeting of tumor compared with healthy tissue
- Phase 1 study- currently active

Reducing the side-effects of chemotherapy by tumour-specific activation

https://www.voxmarkets.co.uk/articles/avacta-announces-dose-escalation-in-the-phase-i-clinical-study-of-ava6000-pro-doxorubicin-0c53383/

2. Identify key radiopharmaceuticals involved in FAP targeting

A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts

Anastasia Loktev^{*1–3}, Thomas Lindner^{*1}, Walter Mier¹, Jürgen Debus^{4,5}, Annette Altmann^{1,2}, Dirk Jäger⁶, Frederik Giesel¹, Clemens Kratochwil¹, Philippe Barthe⁷, Christian Roumestand⁷, and Uwe Haberkorn^{1,2,8}

¹Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; ²Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; ⁴Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; ⁵Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ⁶Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany; ⁷Centre de Biochimie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France; and ⁸Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany

2018- Identification of **FAPI-02** with enhanced binding and uptake in human FAP expressing cells in vitro and mouse models

Development of Fibroblast Activation Protein–Targeted Radiotracers with Improved Tumor Retention

Anastasia Loktev^{1,2}, Thomas Lindner¹, Eva-Maria Burger¹, Annette Altmann^{1,2}, Frederik Giesel¹, Clemens Kratochwil¹, Jürgen Debus^{3,4}, Frederik Marmé⁵, Dirk Jäger⁶, Walter Mier¹, and Uwe Haberkorn^{1,2,7}

¹Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; ²Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany; ³Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; ⁴Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; ⁵Department of Gynecologic Oncology, National Center for Tumor Diseases and Department of Obstetrics and Gynecology, University Women's Clinic, University Hospital Heidelberg, Heidelberg, Germany; ⁶Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany; and ⁷Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany

2019- Identification and characterization of **FAPI-46** as the lead FAPI theranostic compound with improved tumor to background ratio and tumor retention

Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein

Thomas Lindner*¹, Anastasia Loktev*^{1–3}, Annette Altmann^{1,2}, Frederik Giesel¹, Clemens Kratochwil¹, Jürgen Debus^{4,5}, Dirk Jäger⁶, Walter Mier¹, and Uwe Haberkorn^{1,2}

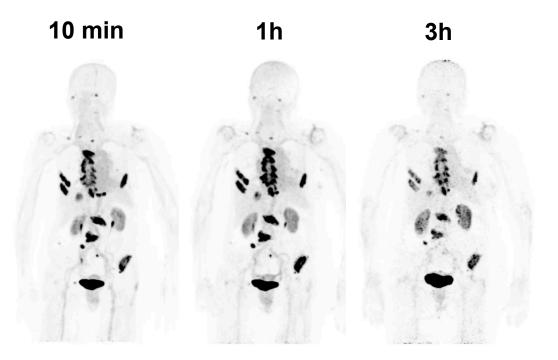
¹Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; ²Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; ⁴Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; ⁵Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and ⁶Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany

2018- Identification and proof of concept of **FAPI-04** with enhanced tumor retention and tumor to blood ratio

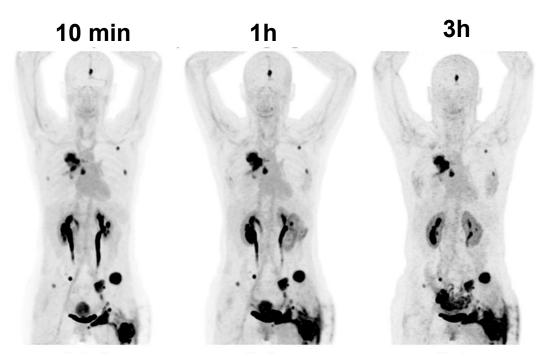
⁶⁸Ga-FAPI PET/CT: Tracer Uptake in of Cancer

Clemens Kratochwil^{*1}, Paul Flechsig^{*1,2}, Thomas Lindner¹, Labidi Abderr Sebastian Adeberg^{4,5}, Hendrik Rathke¹, Manuel Röhrich¹, Hauke Winter^{2,6} Matthias Lang¹⁰, Hans-Ulrich Kauczor^{2,11}, Dirk Jäger^{12,13}, Jürgen Debus^{4,5} Frederik L. Giesel¹

¹Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, G Heidelberg, German Center for Lung Research, Heidelberg, Germany; ³Clinical C Cancer Research Center, Heidelberg, Germany; ⁴Department of Radiation Oncolo Germany; ⁵Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; ⁶E Hospital Heidelberg, Heidelberg, Germany; ⁷Department of Otorhinolaryngology,

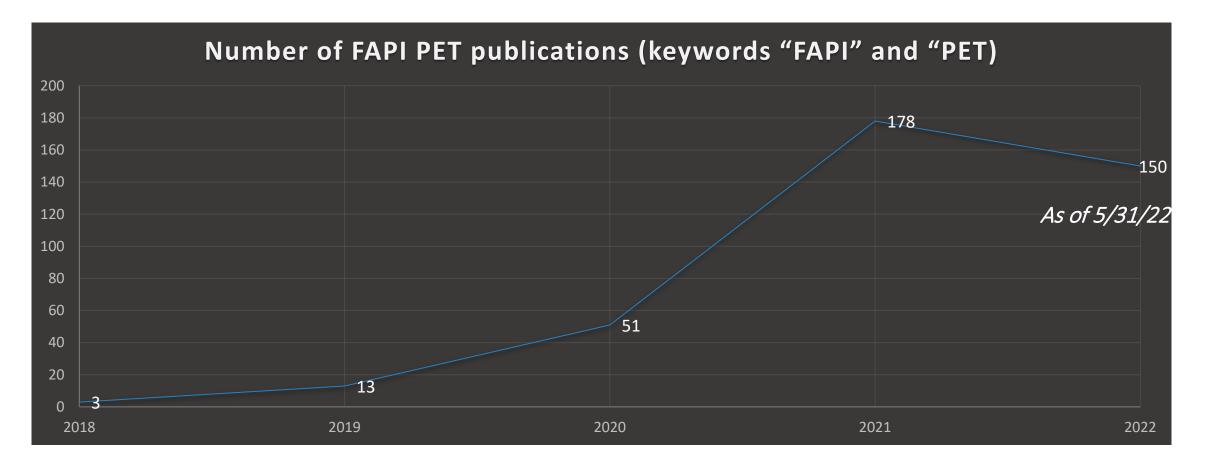

2019- First study of FAPI biodistribution in **eighty patients** with 28 different tumor entities

FAPI-PET in different kinds of cancer


Kinetics of FAP targeting ligands

Loktev et., al., JNM 2018, 59: 1423-14209 (Uwe Haberkorn lab, Univ. of Heidelberg)

Kinetic study with ¹⁸F-FAPI-74 in a lung cancer patient

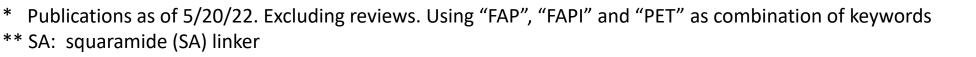


Unpublished. Courtesy of Prof. Giesel. University Hospital Dusseldorf, Germany

Images and publications illustrate the rapid binding of the probe to FAP and rapid clearance from off target tissues

Mounting interest in FAP targeted radiopharmaceuticals

Current state of publications

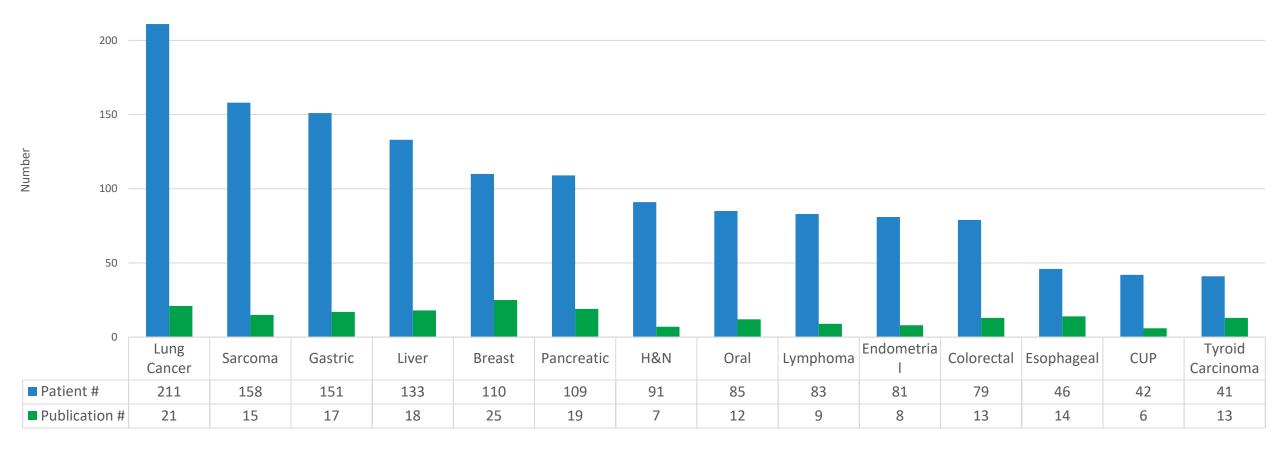

STATISTICS*

- Publications: 326
- Oncology

 Publications: 217
 Patients reported: 4,915
- Non-oncology
 Publications: 109
 Patients reported: 856

COMPOUNDS

- FAPI family of compounds
- FAPI derivatives
- OncoFAP
- **SA.FAPI compounds
- FAP-2286
- RPS-209


List of DIAGNOSTIC radiopharmaceuticals under investigation & published

Compounds used for Imaging with published clinical data FAPI family ⁶⁸Ga: FAPI-04, FAPI-46 and FAPI-74 • ¹⁸F: FAPI-74 ^{99m}Tc: FAPI-34 DOTA.(SA.FAPI)2 OncoFAP • FAP-2286 listed under therapy but also has 68Ga version for imaging

Imlimthan S et al. 2021. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast	
Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel).	

Radionuclide	Inhibitor	Quality o	of Radiation	Evaluation Phase
Radionucliuc		Imaging	Radiotherapy	
¹⁸ F	FAPI-74	PET	-	Clinical: patients with lung cancer
	Glc-FAPI-04			Preclinical: fibrosarcoma and glioblastoma xenografts
	FAPI-02			Clinical: various cancers
	FAPI-04			Clinical: various cancers
	FAPI-20			Preclinical: fibrosarcoma xenograft
	FAPI-21			Clinical: various cancers
68 -	FAPI-22			
⁶⁸ Ga	FAPI-31	PET	-	Preclinical: fibrosarcoma
	FAPI-35			xenograft
	FAPI-36			
	FAPI-37			
	FAPI-46			Clinical: various cancers
	FAPI-74			Clinical: patients with lung cancer
	DOTA.SA.FAPi			Preclinical: colorectal adenocarcinoma xenograftClinical: various cancer patients
	DATA ^{5m} .SA.FAPi			Preclinical: in vitro modelsClinical: restaging of tumor manifestation, liver tumor and metastases imaging
	DOTA.(SA.FAPi)2			Clinical: patient with thyroid
	DOTAGA.(SA.FAPi)2			and pancreatic neuroendocrine tumors
	RPS-309			Preclinical: liposarcoma xenograft
⁶⁸ Ga	Onco-FAP	PET		Clinical: patients with various cancers primarily breast cancer
¹¹¹ In	QCP02	SPECT	-	Preclinical: glioblastoma xenograft
^{99m} Tc	FAPI-34	SPECT	-	Clinical: patients with ovarian metastasis and pancreatic

Cancer indications with more than 40 patients published with FAP radiopharmaceuticals

Publications as of 3/18/22. Excluding reviews. Using "FAP", "FAPI" and "PET" as combination of keywords

Reviews of findings with FAP targeted tracers

Hindawi Contrast Media & Molecular Imaging Volume 2022, Article ID 3948873, 9 pages https://doi.org/10.1155/2022/3948873

Review Article

Could Fibroblast Activation Protein (FAP)-Specific Radioligands Be Considered as Pan-Tumor Agents?

Hessamoddin Roustaei (),¹ Zahra Kiamanesh,¹ Emran Askari (),¹ Ramin Sadeghi (),¹ Kamran Aryana (),¹ and Giorgio Treglia ()^{2,3,4}

¹Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ²Ente Ospedaliero Cantonale, Bellinzona, Switzerland ³Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland ⁴Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

Correspondence should be addressed to Giorgio Treglia; giorgiomednuc@libero.it

State-of-the-art of FAPI-PET Imaging: A Systematic Review and Meta-Analysis

Martina Sollini

HUNIMED: Humanitas University

Margarita Kirienko

Fondazione IRCCS Istituto Nazionale dei Tumori Fabrizia Gelardi (ॼ fabrizia.gelardi@humanitas.it)

HUNIMED: Humanitas University https://orcid.org/0000-0001-7120-333X

Francesco Fiz

IRCCS Humanitas Research Hospital

Noemi Gozzi Istituto Clinico Humanitas: Humanitas Research Hospital

Arturo Chiti

HUNIMED: Humanitas University

Publication review highlights FAPI's performance compared to FDG in a number of indications (including: GI, nasopharyngeal) in primary and metastatic lesion detection

Authors	<i>n</i> of Patients	Tumor Type	Clinical Setting	Injected Activity	Acquisition Timing	Image Analyses	Reference Standard	⁶⁸ Ga-FAPI Performance	¹⁸ F-FDG Performance	MRI Performance	
Röhrich M et al. [23]	18	Gliomas	Staging, Restaging	150–250 MBq	30 min (FA-Pi04); 10, 60 and 180 min (FAPi-02)	S	MRI	SE 83.3%	-	SE 100%	
Windisch P et al. [24]	13	GBM	RT planning	150–250 MBq	30 min	S	MRI	SE 100%	-	SE 100%	
Guo W et al. [26]	34	Hepatic nodules	Staging	148–259 MBq	60 min	V, S	HP, imaging follow-up	SE 87.4%	SE 64.9%	-	
Şahin E et al. [27] 31	21	31 GEP		Staging and	2.2.2.0		V, S	Imaging follow-up, tumor	SE 93.5% (patient based)	SE 71% (patient based)	-
	31		follow-up after treatment	2–3 MBq/Kg	45 min	v, 5	biomarker findings, HP	SE 95.9% (lesion based)	SE 79.6% (lesion based)	-	
								SE 100%	SE 43.8%	-	
								T: SE 100%	T: SE 52.6%	-	
Pang Y et al. [28]	35	35 GI tract	tract Staging, Restaging	1.8–2.2 MBq/Kg	60 min	V, S	НР	N: SE 78.6%, SP 82.1%	N: SE 53.6%, SP 89.3%	-	
								M: SE 88.6%, SP 28.6%	M: SE 57.1%, SP 85.7%	-	
T'								T: SE 100%	T: SE 75%	-	
Jiang D et al. [29]	38	38 Gast	Gastric cancer	Staging	111–185 MBq	60 min	S	НР	N: SE 60%, SP 92.9%	N: SE 50%, SP 92.9%	-

Table 2. Oncological setting: Gliomas, primary liver cancer and gastro-entero-pancreatic cancers.

V, visual analyses; S, semi-quantitative analyses; HP, histopathology; T, primary tumor; N, lymph node(s); M, distant metastases; SE, sensitivity; SP, specificity; GBM, glioblastoma; GEP, gastro-entero-pancreatic; GI tract, gastro-intestinal tract.

Publication review highlights FAPI's performance compared to FDG in a number of indications (including: GI, nasopharyngeal) in primary and metastatic lesion detection

Authors	<i>n</i> of Patients	Tumor Type	Clinical Setting	Injected Activity	Acquisition Timing	Image Analyses	Reference Standard	⁶⁸ Ga-FAPI Performance	¹⁸ F-FDG Performance	MRI Performance
Zhao L et al.	45	Nasopharyngeal	Staging,	1.8–2.2	40 min	V, S	HP, imaging	T: SE 86.7%	T: SE 84.4%	-
[30]	45	carcinoma	Restaging	MBq/Kg	40 min	v, 5	follow-up	N: SE 95%	N: SE 75.2%	N: SE 97.5%
								T: SE 100%	T: SE 100%	-
Qin C et al. [31]	15	Nasopharyngeal carcinoma	Staging, Restaging	1.85–3.7 MBq/Kg	30–60 min	V, S	MRI	N: SE 48%	N: SE 100%	-
								M: SE 100%	M: SE 0%	-
Chen H et al. [32]	68	Various cancer (13 types)	Staging, Restaging	1.8–2.2 MBq/Kg	60 min	V, S	HP, imaging and clinical follow-up	T: SE 86.4%	-	-
								T: SE 98.2%	T: SE 82.1%	-
Chen H et al. [33]	75	75 Various cancer (12 types)	0 0,	1.8–2.2 MBq/Kg	60 min	V, S	HP	N: SE 86.4%, SP 58.8%	N: SE 45.5%, SP 76.5%	-
[33]								M: SE 83.8%, SP 41.7%	M: SE 59.5%, SP 58.3%	-

Table 3. Oncological setting: Head and neck cancers.

V, visual analyses; S, semi-quantitative analyses; HP, histopathology; T, primary tumor; N, lymph node(s); M, distant metastases; SE, sensitivity; SP, specificity.

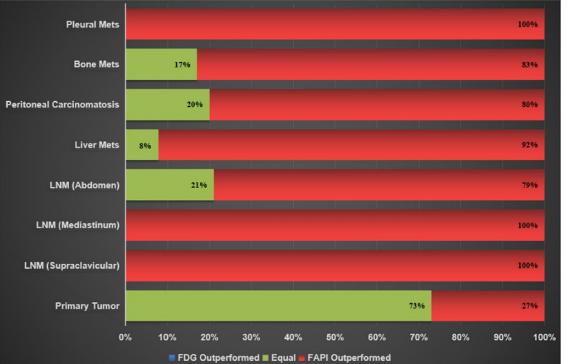
	Authors	Cancer Evaluated	Significant Higher Uptake of Radiolabeled FAPI Compared to [¹⁸ F]F-FDG	Significant Higher TBR of Radiolabeled FAPI Compared to [¹⁸ F]F-FDG	Comparison in the Detection of Primary Tumors	Comparison in the Detection of Metastases
Ba	ıllal et al. [10]	Various cancers	only for brain metastases	only for brain metastases	NR	NR
Cl	hen et al. [11]	Various cancers	yes	yes	FAPI > FDG	FAPI > FDG
Cl	hen et al. [12]	Various cancers	yes	yes	FAPI > FDG	FAPI > FDG
De	endl et al. [13]	Gynecological cancers	no	only for distant metastases	NR	NR
Elb	ooga et al. [14]	Breast cancer	yes	NR	FAPI > FDG	FAPI > FDG
Gi	esel et al. [15]	Various cancers	no	only for liver and bone metastases	NR	NR
G	uo et al. [16]	Liver cancer	yes	yes	FAPI > FDG	FAPI > FDG
Jia	ang et al. [17]	Gastric cancer	no	yes	FAPI > FDG	FAPI = FDG
Ke	ssler et al. [18]	Sarcoma	no	yes	FAPI = FDG	FAPI = FDG
Kö	mek et al. [19]	Breast cancer	yes	yes	FAPI > FDG	FAPI > FDG
Kre	eppel et al. [20]	Liver metastases of NETs	yes	NR	NR	FAPI > FDG
Ku	ıten et al. [21]	Gastric cancer	no	yes	FAPI > FDG	FAPI > FDG
L	an et al. [22]	Various cancers	yes	no	FAPI > FDG	FAPI > FDG
Li	inz et al. [23]	Oral cancer	no	NR	FAPI = FDG	FAPI = FDG
Pa	ang et al. [24]	Gastrointestinal cancers	yes	NR	FAPI > FDG	FAPI > FDG
Ç	2in et al. [25]	Gastric cancer	yes	yes	FAPI > FDG	FAPI > FDG
Ç	2in et al. [26]	Nasopharyngeal cancer	no	NR	FAPI = FDG	FAPI > FDG
Ç	Qin et al. [27]	Bone metastases or bone and joint lesions	no	NR	NR	FAPI > FDG
Sa	hin et al. [28]	Liver metastases of gastrointestinal cancers	no	yes	NR	FAPI > FDG

Table 3. Main results of the included studies about the comparison among [¹⁸F]F-FDG and FAPI radiotracers.

Treglia G et al. 2021- Head-to-Head Comparison of Fibroblast Activation Protein Inhibitors (FAPI) Radiotracers versus [¹⁸F]F-FDG in Oncology: A Systematic Review. Int J Mol Sci

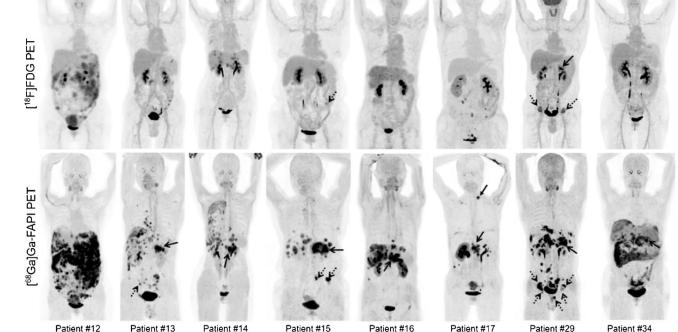
Authors	Cancer Evaluated	Significant Higher Uptake of Radiolabeled FAPI Compared to [¹⁸ F]F-FDG	Significant Higher TBR of Radiolabeled FAPI Compared to [¹⁸ F]F-FDG	Comparison in the Detection of Primary Tumors	Comparison in the Detection of Metastases
Serfling et al. [29]	Suspicious tonsillary tumor or CUP	no	yes	FAPI = FDG	FAPI < FDG
Shi et al. [30]	Liver cancer	yes	yes	FAPI > FDG	FAPI > FDG
Wang et al. [31]	Various cancers	no	yes	FAPI = FDG	FAPI > FDG
Wang et al. [32]	Liver cancer	no	yes	FAPI > FDG	FAPI > FDG
Zhao et al. [33]	Esophageal cancer	yes	NR	NR	NR
Zhao et al. [34]	Peritoneal carcinomatosis	yes	NR	NR	FAPI > FDG
Zhao et al. [35]	Nasopharyngeal cancer	yes	NR	FAPI = FDG	FAPI > FDG

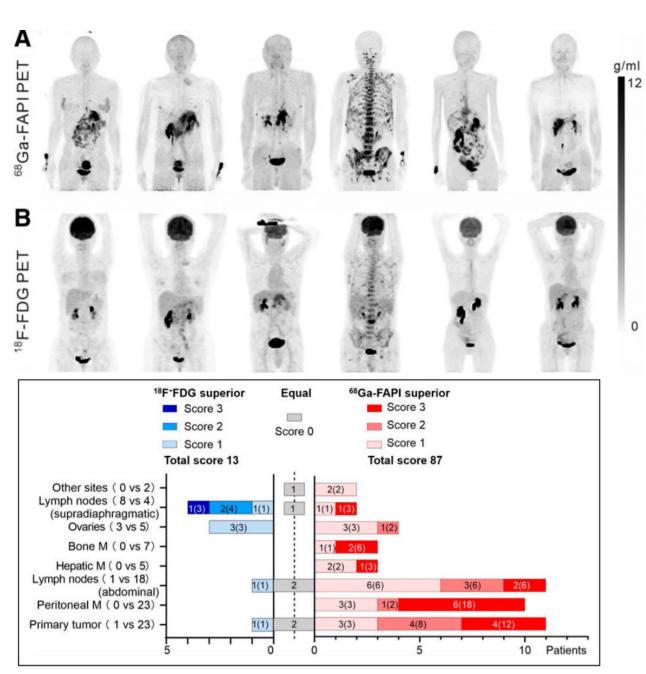
Treglia G et al. 2021- Head-to-Head Comparison of Fibroblast Activation Protein Inhibitors (FAPI) Radiotracers versus [¹⁸F]F-FDG in Oncology: A Systematic Review. Int J Mol Sci


NR = not reported; PET = positron emission tomography; TBR = tumor-to-background ratio.

• Equal or superior detection performance of FAP targeted radioligands compared to FDG in various cancers

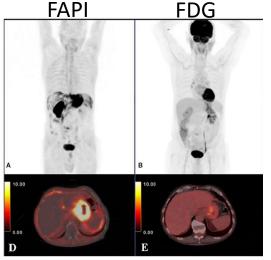
- Preliminary results in the following cancers look promising for detection FAP targeted radioligands:
 - Gastrointestinal (liver, pancreatic, colorectal, gastric etc)
 - Esophageal
 - Head and Neck/CUP
 - Breast
 - Lung
- Seeing superior performance compared to FDG in metastatic lesion detection


Examples


Pancreatic Cancer

Parameters	Primary Tumor	LNM (Supraclavicular)	LNM (Mediastinum)	LNM (Abdomen)	Liver Mets	Peritoneal Carcinomatosis	Bone Mets	Pleural Mets
FAPI Outperformed	7	1	1	11	11	8	5	2
Equal	19	0	0	3	1	2	1	0
FDG Outperformed	0	0	0	0	0	0	0	0

Pang et. al, 2021- Positron emission tomography and computed tomography with [68Ga]fibroblast activation protein inhibitors improves tumor detection and staging in patients with pancreatic cancer



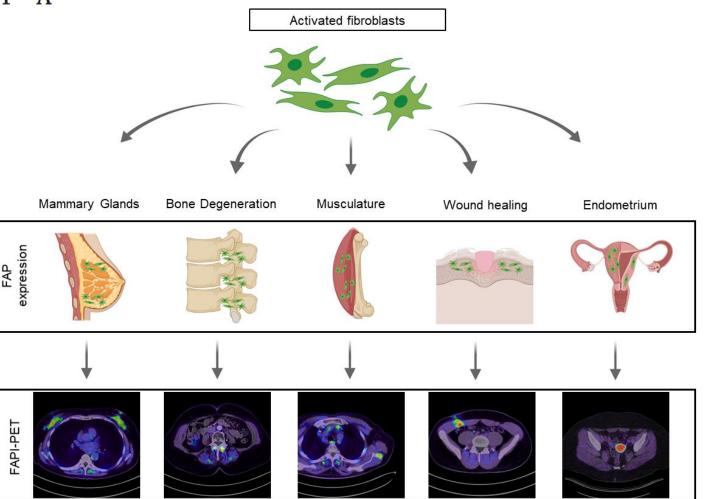
Gastric Cancer

Qin et al. ⁶⁸Ga-DOTA-FAPI-04 PET/MR in the Evaluation of Gastric Carcinomas: Comparison with 18F-FDG PET/CT

FAPI PET was superior to FDG PET in both patient-based and lesion-based evaluation in primary and metastatic (1 exception highlighted below)

Kuten et al. Head-to-head comparison of [68Ga]Ga-FAPI-04 and [18F]-FDG PET/CT in evaluating the extent of disease in gastric adenocarcinoma

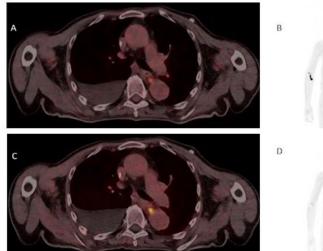
Poorly differentiated gastric adenocarcinoma and peritoneal carcinomatosis.


Pitfalls- Considerations to be made in FAP targeting image interpretations

Pitfalls and common findings in ⁶⁸ Ga-FAPI-PET - A pictorial analysis

Lukas Kessler ¹, Justin Ferdinandus ¹, Nader Hirmas ¹, Fadi Zarrad ¹, Michael Nader ¹, David Kersting ¹, Manuel Weber ¹, Sandra Kazek ¹, Miriam Sraieb ¹, Rainer Hamacher ², Katharina Lueckerath ¹, Lale Umutlu ³, Wolfgang P Fendler ¹, Christoph Rischpler ¹

University Hospital Essen


- 91 patients underwent wholebody PET/CT. Findings were rated in a consensus session of two experienced readers
- Non-tumor specific [⁶⁸Ga]-FAPI uptake in degenerative lesions, muscle, head-and-neck, scarring, mammary glands or uterus
- Common pitfall findings were degenerative lesions mostly associated to joints and vertebral bones

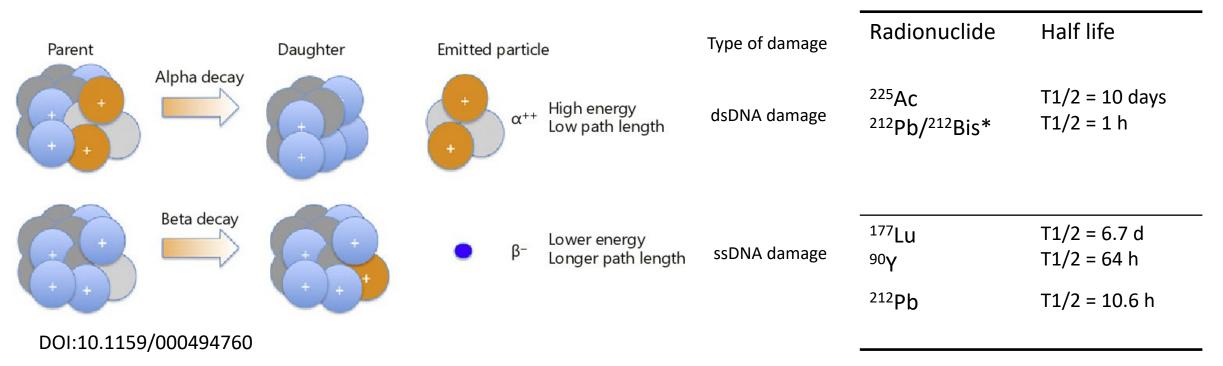
What is to come for FAP targeting in Diagnostics?

- Utility of FAP radiotracers will need to be evaluated in specific indications and tumor state (primary, nodal and distant metastasis) under prospective trials
- Identifying unmet clinical need
- FDG and FAP targeted radiopharmaceuticals image different critical • biological processes in tumorigenesis. Each add respective value informing us of biology of disease. Important to focus on biology of disease information provided by each probe

"We hereby introduce a practicable single session/dual-tracer protocol combining the strengths of two tracers without losing any diagnostic information relevant to cancer staging," wrote first author Dr. Katrin Roth of University Hospital Cologne and colleagues."

Single-tracer PET/CT with F-18 FDG

Transverse section of fused dualtracer F-18 FDG and Ga-68 FAPI-46 PET/CT of the same patient

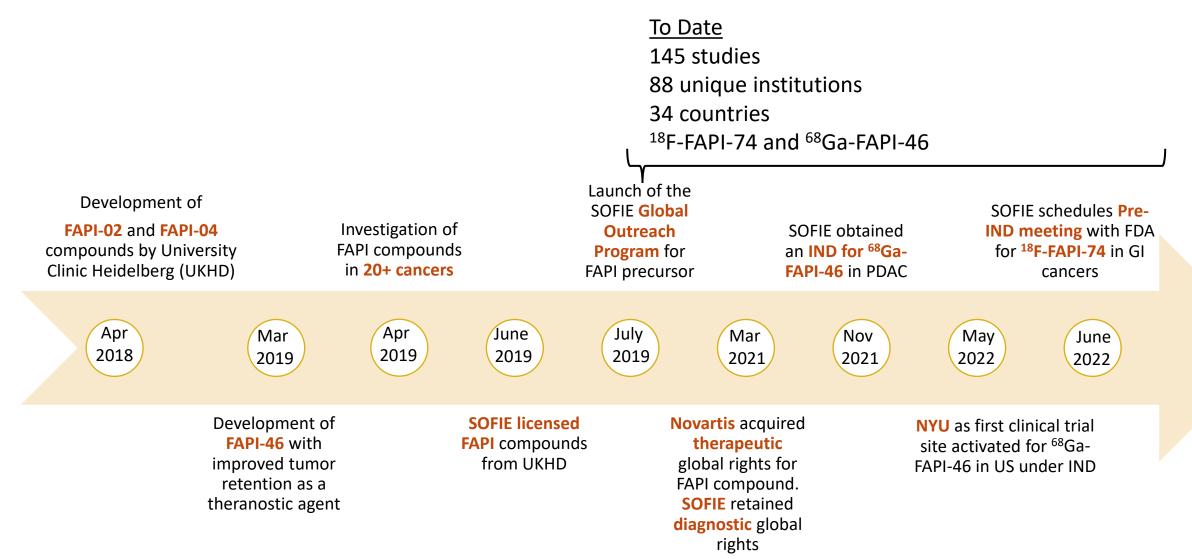

List of THERAPEUTIC radiopharmaceuticals under investigation & published

- Compounds used for Radiotherapy with published clinical data
- FAPI family
 - FAPI-46
- FAP-2286
- [177Lu]-DOTAGA.(SA.FAPi) (Nov 2021 publication)

Radionuclide	Inhibitor	Quality of	f Radiation	Evaluation Phase
Radionucifice	minutor	Imaging	Radiotherapy	
	FAPI-02			Preclinical: glioblastoma
-	FAPI-04	_		xenograft
¹⁷⁷ Lu	FAPI-46	SPECT	Yes	Fully automated radiosynthesis unit
-	RPS-309	_		Preclinical: liposarcoma xenograft
-	OncoFAP	_		Preclinical: renal carcinoma and fibrosarcoma xenograft
-	FAP-2286	_		Preclinical: HEK-FAP tumo bearing animalsClinical: Patients with diverse adenocarcinomas
¹⁵³ Sm	FAPI-46	Scintigraphy	Yes	Clinical: Patient with lung metastatic, fibrous spindle ce soft tissue sarcoma
⁹⁰ Y -	FAPI-04	-	Yes	Clinical: metastatic breast cancer patient
1 -	FAPI-46	_	105	Clinical: patient with metastasized breast and colorectal cancers
				Clinical: patients with metastatic soft tissue or bon sarcoma, and pancreatic cancer
²²⁵ Ac	FAPI-04	-	Yes	Preclinical: pancreatic cancer
⁶⁴ Cu	FAPI-04	PET	Yes	xenograft

Imlimithan S et al. 2021. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress, Pharmaceuticals (Basel)

Radioligand therapy: Considerations to be made



*²¹²Pb, by itself is a β -emitter, but acts as an in vivo generator for its short-lived α -emitting daughters.

- Assessment of RLT utility of FAP targeted radioligands is in early clinical investigation
- Alpha vs beta emission vs both
- Monotherapy vs Combination therapy (RLT followed by non RLT)
- Patient disease state and best course of treatment for the patient

3. Describe the current state of clinical development for FAP Inhibitors (FAPI) in diagnostic and companion diagnostic use

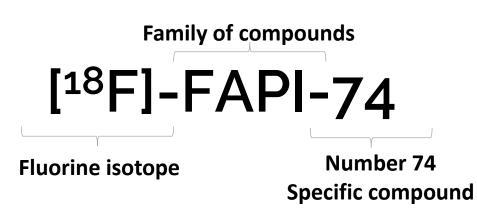
Evolution of FAPI Family of compounds

SOFIE's Product Pipeline

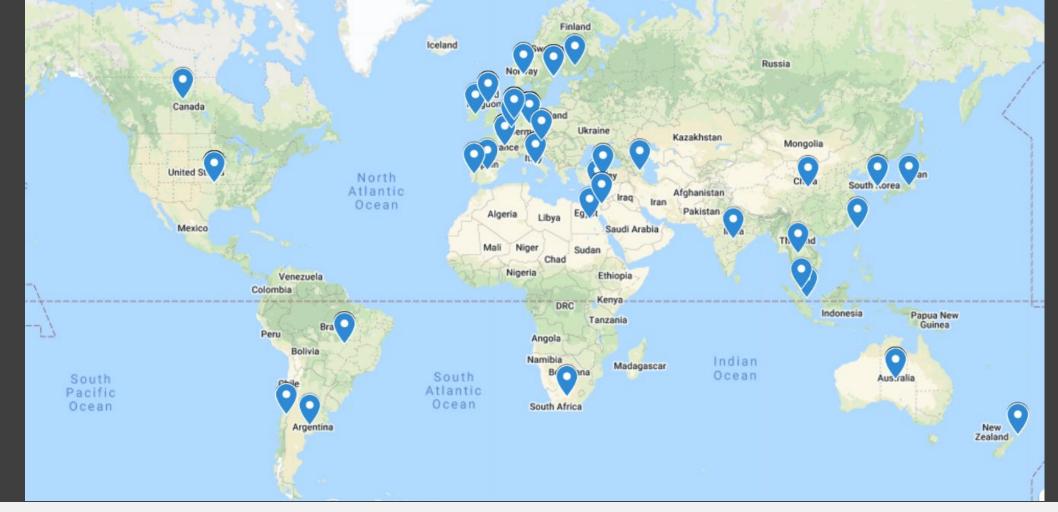
Product	Indication	Pre-Clinical	Phase 1	Phase 2	Phase 3
SOFIE Sponsored O	Clinical Research program				
[¹⁸ F]-FAPI-74	Gastrointestinal Cancers	Pre-IND in support of	^F Phase 2 scheduled		
[⁶⁸ Ga]-FAPI-46	Pancreatic Cancer	Phase	2 initiated		

SOFIE FAPI Global Outreach Program: 140+ Investigator Initiated Studies being conducted by 80+ sites globally

[¹⁸ F]-FAPI-74 [⁶⁸ Ga]-FAPI-46	Oncology		
[¹⁸ F]-FAPI-74 [⁶⁸ Ga]-FAPI-46	Non-Oncology: Fibrosis Inflammation Cardiovascular		



Family of compounds [68Ga]-FAPI-46


Gallium isotope

Number 46 Specific compound

- Lead gallium labeled compound.
- DOTA chelator in the molecular structure allows coupling of the FAPI molecules for theranostic use
- SOFIE has obtained an IND for [⁶⁸Ga]-FAPI-46 for a Phase 2 study
- A Phase 2, Multicenter, Single Arm, Open Label, Non-Randomized Study of [⁶⁸Ga]FAPI-46 PET in Patients with Resectable or Borderline Resectable Pancreatic Ductal Carcinoma
- Total number of patients: 60
- Study launch: May 2022
- First site activated: NYU

- Lead Fluorine 18 compound
- Allows for broader applicability of FAPI PET through 18-F radiolabeling
 - Established supply chain with higher level of supply capacity with convenience to imaging practices
 - Provides advantage of a longer half life (2 hours)
 - Meeting the capacity to support larger studies with high patient throughput
- Automated synthesis consumables available through Trasis for MiniAIO and AIO
- Pre-IND meeting scheduled with FDA for July 2022
- IND enabling data completed

SOFIE's FAPI Global Outreach Program

- 34 Countries
- 140+ research studies
- Studies include: Chemistry, pre-clinical, clinical, oncology and non-oncology
- 80+ unique institutions
- Compounds: [¹⁸F]-FAPI-74 and [⁶⁸Ga]-FAPI-46

SOFIE's FAPI Global Outreach Program

Gain access to GMP grade precursor and reference standard in support of investigator-initiated trial Technical manufacturing assistance to get the sites started

Cross Reference to SOFIE's IND(s) or IND content to pursue investigator-initiated trial Allows sites to expand their research program and grant opportunities

Process for access to FAPI precursor

SOFIE's vision is to improve patient outcomes by developing and delivering molecular diagnostics and therapeutics (theranostics).

With our robust radiopharmaceutical production and distribution network, mature contract manufacturing services in a new, 20,000 ft² facility in New Jersey and FAPI intellectual property, we are poised to deliver on the promise of theranostics.

SNMMI Annual Meeting 2022 June 11 - June 14

6:30-8:30 pm PDT

FAP Ligands for Imaging and Therapy

FAP (fibroblast activation protein) as a diagnostic and therapeutic target for radiopharmaceuticals has seen many advances in recent years. This special session will bring together researchers and industry sponsors to discuss the latest progress in this space.

Click here for SOFIE FAPI Flyer.

Moderators:

Professor Ken Herrmann, MD, MBA, University Hospital Essen Professor Johannes Czernin, MD, University of California, Los Angeles

Speakers:

Professor Frederik L. Giesel, MD, MBA, University Hospital Düsseldorf, Germany Associate Professor Jeremie Calais, MD, MSc, University of California, Los Angeles Professor Thomas Hope, MD, University of California, San Francisco Robin Hallett, PhD, VP Discovery and Translational Sciences, POINT Biopharma Sherly Mosessian, PhD, Chief Scientific Officer, SOFIE Biosciences Elcin Zan, MD, Director, Nuclear Theranostics, New York University Curt Wolfgang, PhD, VP, Clinical Development, Clovis Oncology

Visit SOFIE at the upcoming meeting from June 11 – 14, 2022 in Vancouver, Canada at Booth #319.

FAP Satellite Symposium at SNMMI – Sunday, June 12, 2022 from 6:30–8:30 pm PDT

Questions? Reach out to me at Sherly.Mosessian@sofie.com

